Snapback Zone
Rope Trajectory
When connecting synthetic tails to HMSF and wire mooring lines, the elasticity of the tails introduces energy that can significantly increase the snap-back hazard.

Elongation is proportional to the length of the tail. The fitting of longer synthetic tails, e.g. 22m tails from 11m tails, proportionally increases the stored energy and the amount of snap-back that can be expected.

Mooring lines led around roller pedestals and fairleads have the potential to create complex snap-back zones.
What do we know now?

Mooring Line:

MBL = 137 tonnes **failed at 24 tonnes**
Life expectancy = 8 years **failed at 5 years**

Source:

What do we know from MAIB?

Source:
What are our next steps?
MEG 4 WG

Chairman: Ian Chadwick (Chevron) / Vice Chair: Jeff Bayham (ExxonMobil)
Chair: Kris Volenhein (Samson) / Vice Chair: Jac Spijkers (Dyneema)
Ian Chadwick (Chevron)
Tim Hunter (EuroCord)
What’s the Challenge?
The Mooring System!
What’s the Challenge?
MEG – Desired Outcomes

- Incorporate lessons learned from the Zarga incident and update section on HMSF ropes
- Incorporate relevant publications into MEG
- www.ocimf.org/MEG4
- Draft for internal publication review Q2-2017
MEG – Desired Outcomes

- Keep target audience in mind
 - Operators, Ship Staff, SIRE Inspectors, Shipyards

- Provide Clarity
 - Safety Factors, Terminology, Tail Length, Snapback Zones

- MOC Process
 - Alternate and Emerging Technology, Changing Ropes, Record Keeping

Human Factors
MEG – Desired Outcomes

Protect our people
Questions?